

GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL CHEMISTRY - UNIT 4 1410U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

	Question			Marking do	taila	Marks available					
	Zuesnon			Marking de	talis	AO1	AO2	AO3	Total	Maths	Prac
1		C ₉	H ₁₈ O ₆				1		1		
2		bu	tanoic acid			1			1		1
		ac	cept methylprop	anoic acid / pentanec	lioic acid						
3											
			Proton(s)	Splitting pattern	Relative peak area ratio						
			а	singlet	1						
			b	singlet	2		2		2		
4		lea	ast acidic B	C A mo	ost acidic		1		1		
5			- (despite the lac cend in order of		neasurement) the spots will	1			1		
6		Na	aOH / I ₂ or NaO0	CI / KI			1				
			ntan-2-one give ange with 1-phe		ipitate and no observable		1		2		2

Outo	stion		Marking dataila			Marks a	vailable		
Que	1	1	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(a)		award (1) for any of following $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		1		
	(b)		H - C - H - C - CI			1	1		
			Section A total	2	7	1	10	0	3

Section B

	Ques	tion		Marking dataila			Marks a	vailable		
	Ques	tion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	(a)	(i)		•CH ₂ COOH			1	1		
		(ii)	I	CH ₃ COOH \rightarrow CICH ₂ COOH $60.0 \rightarrow 94.5$ $89.0 \rightarrow 140.2$ (1) increase in mass $140.2 - 89.0 = 51.2$ g (1) accept 51 g		1	1	2		
			II	CH ₃ COOH \rightarrow CH ₂ (NH ₂)COOH $60.0 \rightarrow 75.0$ $89.0 \rightarrow 111.3$ (1) percentage yield = $\frac{49.2 \times 100}{111.3}$ = 44.3 (1) answer must be to 3 significant figures		1 1		2	1	
			III	it exists as zwitterions / ionic compound (1) accept correctly drawn correct formula of zwitterion ionic compounds are not (generally) soluble in covalent solvents (1)	1		1	2		
	(b)			it does not contain a chiral centre / asymmetric carbon atom	1			1		

Question	Marking dataila			Marks a	9		
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
(c)	NH ₂ O H		1		1		
(d)	stoichiometric ratio is 1:1 (1) using pV = nRT volume = $\frac{0.300 \times 8.31 \times 373}{9.8 \times 10^4}$ (1) 9.49 dm³ (1) must be given in dm³	1	2		3	2	
(e)	the (sodium) salt of the acid is formed		1		1		1
	Question 8 total	3	7	3	13	3	1

0	-4:		Maukin walataila			Marks a	available		
Que	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
9 (a)	(i)		 award (1) for either of following the groups bonded to each carbon atom of the C=C must be the same it must be a symmetrical alkene 			1	1		
	(ii)		orange / red / yellow	1			1		1
	(iii)	I	 award (1) for any of following it does not contain a C group it is not an aldehyde 			1	1		
		II	it is not an aldehyde, therefore cannot be $CH_3(CH_2)_3CHO$ or $CH_3(CH_2)_2CHO$ (1) accept it must be $CH_3(CH_2)_3C$ or CH_3 or CH_3CH_2C o melting temperature cannot be higher than the literature value therefore it cannot be $CH_3(CH_2)_3C$ CH_3 (1) compound \mathbf{U} must be CH_3CH_2C CH_3 (1) ecf possible	1	1		3		

Oues	tion	Marking dataila			Marks	available		
Ques	lion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	(iv)	CH_3CH_2 $C=C$ CH_2CH_3 (1) accept <i>E</i> - or <i>Z</i> - isomer CH_3 3,4-dimethylhex-3-ene (<i>E</i> - or <i>Z</i> - as structure given) (1) ecf possible from (a)(iii)II		1	1	2		
(b)	(i)	award (1) for any of following renewable source does not use fossil fuels method 2 gives two products (or biodiesel and propan-1,2,3-triol) availability of raw materials 	1			1		
	(ii)	award (1) each for any two of following	2			2		2

Question	Marking dataila			Marks	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(iii)	award (1) for diagram and biodiesel labelled as top layer biodiesel propane-1,2,3-triol award (1) for name of separating funnel	1		1			2
(iv)	$CH_{2} = CH - C$ $CH_{2} = CH - C$ $CH_{2} = CH - C$ $C = N$ $CH_{2} = CH - C$ $C = N$ $CH_{2} = CH - C$ $C = N$	•	2		2		2
	Question 9 total	7	4	4	15	0	5

	Question				Marks available				
	Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
10	(a)	(i)	 award (1) for either of following sodium nitrite / nitrate(III) / NaNO₂ and HCI / hydrochloric acid nitrous acid / nitric(III) acid / HNO₂ / HONO 	1			1		1
		(ii)	CH ₃		1		1		
		(iii)	$f = \frac{c}{\lambda} \tag{1}$	1					
			$7.32 \times 10^{14} \mathrm{Hz}$ (1)		1		2	2	
	(b)	(i)	number of moles = $\frac{0.0075 \times 250}{1000}$ = 1.875 × 10 ⁻³ (1)						
			mass required = $272 \times 1.875 \times 10^{-3} = 0.51 \text{ g}$ (1)		2		2	1	
		(ii)	$\frac{1.44}{1.03} = \frac{k \times 0.0096}{k \times c} \tag{1}$						
			$c = \frac{0.0096 \times 1.03}{1.44} = 6.87 \times 10^{-3} / 0.00687 / 0.0069 \text{ mol dm}^{-3} $ (1)		2		2	2	
			accept alternative method						
			$k = 150 \tag{1}$						
			$c = 6.87 \times 10^{-3} / 0.00687 / 0.0069 \text{ mol dm}^{-3} (1)$						

Questi	ion	Mouking details		Marks available				
Questi	OH	Marking details	A01	AO2	AO3	Total	Maths	Prac
(c)	(i)	$CH_3COOH + NH_2CONH_2 \rightarrow CH_3CONH_2 + CO_2 + NH_3$		1		1		
	(ii)	it contains a <u>nitrogen</u> atom that has a lone pair of electrons / is a proton acceptor		1		1		
	(iii)	the C=O absorption at 1650-1750 cm ⁻¹ decreases / the N—H absorption at 3300-3500 cm ⁻¹ decreases (1) the C≡N absorption at 2100-2250 cm ⁻¹ increases (1)		2		2		
	<i>(</i> ;)	. , ,		2		2		
	(iv)	 award (1) for any of following the benzene ring / negative electron cloud is not (easily) susceptible to attack by nucleophiles the benzene ring / negative electron cloud is usually attacked by electrophiles the C—CI bond in chlorobenzene is stronger than the C—CI aliphatic bond 			1	1		
		Question 10 total	2	10	1	13	5	1

l .	Question	ion	Marking dataila	Marks available							
'	Quesi	ion	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)	Indicative content Indica	4 sizes, use neluding kens and voc	e of a fum ey elemen cabulary is dicative co	2 e cupboats of the instance accomment. So	6 ard for the ndicative of curately the	e reaction content. A roughout.	and		

Question	Marking details			Marks a	vailable		
	_	AO1	AO2	AO3	Total	Maths	Prac
(ii)	mole ratio 1:1 moles of 2-hydroxybenzoic acid used = $\frac{4.00}{138.06}$ = 0.0290 (1)						
	theoretical moles of nitroacid = 0.290						
	theoretical mass of nitroacid = 5.306 / 5.31 g (1)						
	percentage yield is 41 therefore						
	mass obtained = $\frac{5.31 \times 41}{100}$ = 2.18 g (1)		3		3	2	
(iii)	relative mass of compound $\bf J$ without two X groups ($C_7H_6O_3$) = 136 relative mass of two X groups is 228 – 136 = 92						
	each X group has mass of 46 (1)						
	 award (1) for either of following X must contain 2 oxygen atoms (as 7 in total) atoms therefore remainder is 14 - other atom must be nitrogen and X is NO₂ 			2	2		
	• structure of compound J						
(iv)	lower temperature / lower concentration HNO ₃ / lower volume of aqueous HNO ₃ / less heating time			1	1		
(b)	2-hydroxybenzenecarboxylic acid will react with NaHCO ₃ / Na ₂ CO ₃ to give effervescence	1			1		1
	Question 11 total	5	3	5	13	2	7

	0		Mauking dataila			Marks a	vailable		
	Quest	uon	Marking details	AO1	AO2	AO3	Total	Maths	Prac
12	(a)	(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			1		
		(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	2		
		(iii)	in condensation polymerisation a small molecule / H_2O / HCI is eliminated but no elimination in addition polymerisation	1			1		

Ougstion	Marking details	Marks available						
Question		A01	AO2	AO3	Total	Maths	Prac	
(iv)	5 environments correctly identified from the ¹³ C NMR spectrum and indicated on drawn structure of 1,3-dimethylbenzene (1)	1						
	signals at 126-136 δ identified as aromatic (1) $\frac{1}{5}$							
	signal at 20 δ identified as aliphatic / CH ₃ (1) $\frac{1}{2}$			2	3			
(v)	must be an aromatic compound so at least 6 carbon atoms (1)							
	molecular formula therefore likely to be C ₈ H ₆ O ₂ (1)		2					
	there are 2 additional carbon atoms therefore likely to be a dialdehyde or cannot be acid-aldehyde or alcohol-aldehyde or acid-alcohol as molecular formula does not fit (1)							
	made by partial oxidation (of each methyl group) (1)							
	formula is $\begin{pmatrix} H \\ C \end{pmatrix} = \begin{pmatrix} C \\ C \end{pmatrix} = \begin{pmatrix} H \\ C \end{pmatrix}$ (1)			3	5			

Questi	ion	Mayking dataila	Marks available						
Questi	ion	Marking details		AO2	AO3	Total	Maths	Prac	
(b)	(i)	 award (1) for any of following phosphorus(III) chloride / phosphorus trichloride / PCl₃ phosphorus(V) chloride / phosphorus pentachloride / PCl₅ sulfur dichloride oxide / thionyl chloride / SOCl₂ 	1			1		1	
	(ii)	71g chlorine in 239.1 g decanedioyl dichloride (1) 0.977g chlorine in $\frac{239.1}{71} \times 0.977 = 3.29$ g dichloride percentage purity = $\frac{3.29}{3.50} \times 100 = 94.0$ (1)		1	1	2	2		
	(iii)	moisture/water gained entry to the bottle and hydrolysed the decanedioyl dichloride when it was previously opened			1	1		1	
		Question 12 total	4	3	9	16	2	2	

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	2	7	1	10	0	3
8	3	7	3	13	3	1
9	7	4	4	15	0	5
10	2	10	1	13	5	1
11	5	3	5	13	2	7
12	4	3	9	16	2	2
Totals	23	34	23	80	12	19