шјес cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL
CHEMISTRY - UNIT 4 1410U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME
GENERAL INSTRUCTIONS

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf $=$ error carried forward
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Section B

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
8	(a)	(i)			- $\mathrm{CH}_{2} \mathrm{COOH}$			1	1		
		(ii)	1	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CICH}_{2} \mathrm{COOH} \\ & 60.0 \rightarrow 94.5 \\ & 89.0 \rightarrow 140.2 \end{aligned}$ $\begin{equation*} \text { increase in mass } 140.2-89.0=51.2 \mathrm{~g} \tag{1} \end{equation*}$ $\text { accept } 51 \mathrm{~g}$		1	1	2			
			II	$\begin{align*} & \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right) \mathrm{COOH} \\ & 60.0 \rightarrow 75.0 \\ & 89.0 \rightarrow 111.3 \\ & \text { percentage yield }=\frac{49.2 \times 100}{111.3}=44.3 \tag{1}\\ & \text { answer must be to } 3 \text { significant figures } \end{align*}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$		2	1		
			III	it exists as zwitterions / ionic compound (1) accept correctly drawn correct formula of zwitterion ionic compounds are not (generally) soluble in covalent solvents (1)	1		1	2			
	(b)			it does not contain a chiral centre / asymmetric carbon atom	1			1			

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
9	(a)	(i)			award (1) for either of following - the groups bonded to each carbon atom of the $\mathrm{C}=\mathrm{C}$ must be the same - it must be a symmetrical alkene			1	1		
		(ii)		orange / red / yellow	1			1		1	
		(iii)	1	award (1) for any of following - it does not contain a group - it is not an aldehyde			1	1			
			II	it is not an aldehyde, therefore cannot be $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHO}$ or $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}$ accept it must be or melting temperature cannot be higher than the literature value therefore it cannot be compound U must be ecf possible	1 1	1		3			

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)		award (1) for either of following - sodium nitrite / nitrate(III) / NaNO_{2} and $\mathrm{HCl} /$ hydrochloric acid - nitrous acid / nitric(III) acid / $\mathrm{HNO}_{2} / \mathrm{HONO}$	1			1		1
		(ii)			1		1			
		(iii)	$\begin{align*} & f=\frac{c}{\lambda} \tag{1}\\ & 7.32 \times 10^{14} \mathrm{~Hz} \tag{1} \end{align*}$	1	1		2	2		
	(b)	(i)	$\begin{align*} & \text { number of moles }=\frac{0.0075 \times 250}{1000}=1.875 \times 10^{-3} \tag{1}\\ & \text { mass required }=272 \times 1.875 \times 10^{-3}=0.51 \mathrm{~g} \tag{1} \end{align*}$		2		2	1		
		(ii)	$\begin{align*} & \frac{1.44}{1.03}=\frac{k \times 0.0096}{k \times c} \quad(1) \\ & c=\frac{0.0096 \times 1.03}{1.44}=6.87 \times 10^{-3} / 0.00687 / 0.0069 \mathrm{~mol} \mathrm{dm}^{-3} \tag{1}\\ & \text { accept alternative method } \\ & k=150 \quad \text { (1) } \tag{1}\\ & \mathrm{c}=6.87 \times 10^{-3} / 0.00687 / 0.0069 \mathrm{~mol} \mathrm{dm}^{-3}(1) \end{align*}$		2		2	2		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)		$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{2} \mathrm{CONH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{CO}_{2}+\mathrm{NH}_{3}$		1		1		
	(ii)	it contains a nitrogen atom that has a lone pair of electrons / is a proton acceptor		1		1			
	(iii)	the $\mathrm{C}=\mathrm{O}$ absorption at $1650-1750 \mathrm{~cm}^{-1}$ decreases / the $\mathrm{N}-\mathrm{H}$ absorption at $3300-3500 \mathrm{~cm}^{-1}$ decreases (1) the $\mathrm{C} \equiv \mathrm{N}$ absorption at $2100-2250 \mathrm{~cm}^{-1}$ increases (1)		2		2			
	(iv)	award (1) for any of following - the benzene ring / negative electron cloud is not (easily) susceptible to attack by nucleophiles - the benzene ring / negative electron cloud is usually attacked by electrophiles - the $\mathrm{C}-\mathrm{Cl}$ bond in chlorobenzene is stronger than the $\mathrm{C}-\mathrm{Cl}$ aliphatic bond			1	1			
		Question 10 total	2	10	1	13	5	1	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
	(ii)		mole ratio 1:1 moles of 2-hydroxybenzoic acid used $=\frac{4.00}{138.06}=0.0290$ theoretical moles of nitroacid $=0.290$ $\begin{equation*} \text { theoretical mass of nitroacid }=5.306 / 5.31 \mathrm{~g} \tag{1} \end{equation*}$ percentage yield is 41 therefore $\begin{equation*} \text { mass obtained }=\frac{5.31 \times 41}{100}=2.18 \mathrm{~g} \tag{1} \end{equation*}$		3		3	2	
	(iii)	relative mass of compound \mathbf{J} without two X groups $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)=136$ relative mass of two X groups is $228-136=92$ each X group has mass of 46 (1) award (1) for either of following - X must contain 2 oxygen atoms (as 7 in total) atoms therefore remainder is 14 - other atom must be nitrogen and X is NO_{2} - structure of compound J			2	2			
	(iv)	lower temperature / lower concentration HNO_{3} / lower volume of aqueous HNO_{3} / less heating time			1	1			
(b)		2-hydroxybenzenecarboxylic acid will react with $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ to give effervescence	1			1		1	
		Question 11 total	5	3	5	13	2	7	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12	(a)	(i)			1			1		
		(ii)	award (1) for correct formulae award (1) for balancing only if formulae are correct			2	2			
		(iii)	in condensation polymerisation a small molecule / $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl}$ is eliminated but no elimination in addition polymerisation	1			1			

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	2	7	1	10	0	3
8	3	7	3	13	3	1
9	7	4	4	15	0	5
10	2	10	1	13	5	1
11	5	3	5	13	2	7
12	4	3	9	16	2	2
Totals	23	34	23	80	12	19

